Seismic deconvolution by atomic decomposition: A parametric approach with sparseness constraints
نویسنده
چکیده
In this paper an alternative approach to the blind seismic deconvolution problem is presented that aims for two goals namely recovering the location and relative strength of seismic reflectors, possibly with super-localization, as well as obtaining detailed parametric characterizations for the reflectors. We hope to accomplish these goals by decomposing seismic data into a redundant dictionary of parameterized waveforms designed to closely match the properties of reflection events associated with sedimentary records. In particular, our method allows for highly intermittent non-Gaussian records yielding a reflectivity that can no longer be described by a stationary random process or by a spike train. Instead, we propose a reflector parameterization that not only recovers the reflector’s location and relative strength but which also captures reflector attributes such as its local scaling, sharpness and instantaneous phase-delay. The first set of parameters delineates the stratigraphy whereas the second provides information on the lithology. As a consequence of the redundant parameterization, finding the matching waveforms from the dictionary involves the solution of an ill-posed problem. Two complementary sparseness-imposing methods Matching and Basis Pursuit are compared for our dictionary and applied to seismic data.
منابع مشابه
Body-wave interferometry using regional earthquakes with multidimensional deconvolution after wavefield decomposition at free surface
S U M M A R Y Passive seismic methods using earthquakes can be applied for extracting body waves and obtaining information of subsurface structure. In this study, we retrieve direct and reflected plane waves by applying seismic interferometry to the recorded ground motion from a cluster of regional earthquakes. We apply upgoing/downgoing P/S wavefield decomposition, time windowing, and multidim...
متن کاملQuantitative tools for seismic stratigraphy and lithology characterization
Seismological images represent maps of the earth’s structure. Apparent bandwidth limitation of seismic data prevents successful estimation of transition sharpness by the multiscale wavelet transform. We discuss the application of two recently developed techniques for (non-linear) singularity analysis designed for bandwidth limited data, such as imaged seismic reflectivity. The first method is a...
متن کاملSparseness - constrained seismic deconvolution with Curvelets
Continuity along reflectors in seismic images is used via Curvelet representation to stabilize the convolution operator inversion. The Curvelet transform is a new multiscale transform that provides sparse representations for images that comprise smooth objects separated by piece-wise smooth discontinuities (e.g. seismic images). Our iterative Curvelet-regularized deconvolution algorithm combine...
متن کاملSeismic reflector characterization by a multiscale detection-estimation method
Seismic reflector interfaces in the subsurface are typically idealized as zero-order discontinuities. According to this model, the Earth’s subsurface is represented by a spiky reflection coefficient sequence for which deconvolution methods have been derived. However, multiscale analysis on sedimentary basins reveals the existence of accumulation of varying-order singularities in the subsurface....
متن کاملA Generalized Deconvolution Approach for Local Radon Transforms
A chief problem in seismic data processing is the filtering of unwanted events like ground roll and multiples. Methods to deal with this problem often exploit moveout or curvature differences between offending events and the events one would like to preserve (primaries). In particular, removal of multiples based on moveout discrimination can be attained via parabolic and hyperbolic Radon transf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrated Computer-Aided Engineering
دوره 12 شماره
صفحات -
تاریخ انتشار 2005